

Fig. 2. Bright-field TEM micrographs of modulated α_2 laths with SAED pattern along $\langle 11\bar{2}0 \rangle \alpha_2$ (a), along $\langle 10\bar{1}0 \rangle \alpha_2$ (b), and dark-field micrograph recorded by a reflection of the O phase indicated by a circle (c).

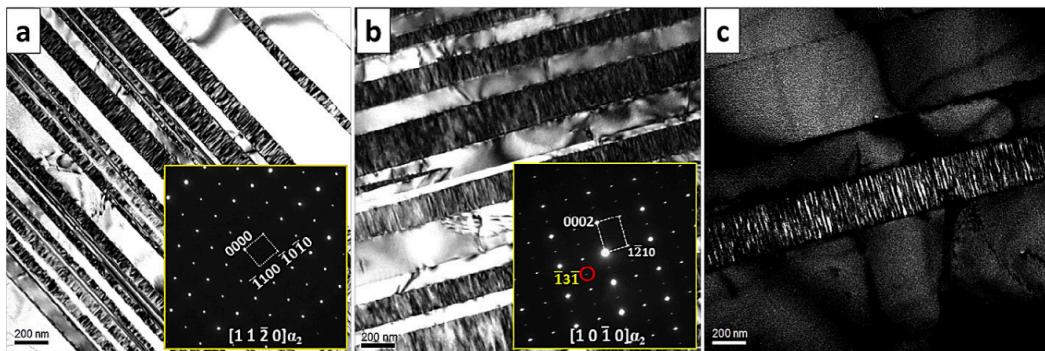

The microstructure of the γ -based Ti-45Al-8.5Nb alloy observed by SEM in BSE mode is a near fully-lamellar microstructure with an average grain size of 62 μm , as shown in Fig. 1. Lamellar colonies composed of alternating $\alpha_2+\gamma$ laths are arranged randomly. The bright contrast phases often located at the peripheries of the lamellar colonies are the remnant B2 phase [21,22], and the volume fraction of remnant B2 phases was estimated to be about 5%.

Fig. 2(a and b) are bright-field TEM micrographs of the microstructure slightly off the $\langle 11\bar{2}0 \rangle \alpha_2$ and $\langle 10\bar{1}0 \rangle \alpha_2$ directions, respectively, showing a nano-scale modulated structure with tweed contrast within α_2 laths on the γ/α_2 lamellae edge-on projection. The chemical composition analyses were carried out for the γ phase and modulated α_2 laths (ML) in the alloy by EDS, and the results are shown in Table 1. The SAED pattern of the modulated structure along $\langle 11\bar{2}0 \rangle \alpha_2$ is inserted in Fig. 2(a), which shows no additional reflections besides those of the α_2 phase. The SAED pattern of the modulated structure along $\langle 10\bar{1}0 \rangle \alpha_2$ is inserted in Fig. 2(b), in which the reflections at positions along the $\langle 0001 \rangle \alpha_2$ direction extinct for the α_2 phase were observed. These reflections can be indexed as those in the pattern of $\langle 310 \rangle_0$ of the O phase, according to orientation relationships of $\langle 001 \rangle_0 // \langle 0001 \rangle \alpha_2$ and $\langle 100 \rangle_0 // \langle 11\bar{2}0 \rangle \alpha_2$ reported in the literature [2]. A dark-field TEM micrograph recorded from a reflection of the O phase is shown in

Fig. 2(c), indicating a needle-like morphology of the O phase at nano-scale within α_2 laths. The needles of the O phase are vertical to the α_2/γ interface with $\langle 0001 \rangle \alpha_2 // \langle 111 \rangle \gamma$. One can find that the most of the O phase needles form at the α_2/γ interface and terminate inside the α_2 lath. It is speculated that a mismatch between α_2 and γ phases favors heterogeneous nucleation of the O phase at the α_2/γ interface.

Fig. 2. Bright-field TEM micrographs of modulated α_2 laths with SAED pattern along $\langle 11\bar{2}0 \rangle \alpha_2$ (a), along $\langle 10\bar{1}0 \rangle \alpha_2$ (b), and dark-field micrograph recorded by a reflection of the O phase indicated by a circle (c).

Fig. 2. Bright-field TEM micrographs of modulated α_2 laths with SAED pattern along $\langle 11\bar{2}0 \rangle \alpha_2$ (a), along $\langle 10\bar{1}0 \rangle \alpha_2$ (b), and dark-field micrograph recorded by a reflection of the O phase indicated by a circle (c).

EPFL Example TEM data analysis